Dualities for linear control differential systems with infinite matrices
نویسندگان
چکیده
Abstract: Infinite–dimensional linear dynamic systems described by infinite matrices are studied. Approximate controllability for systems with lower-diagonal matrices is investigated, whereas observability is studied for systems with row-finite and upper-diagonal matrices. Different necessary or sufficient conditions of approximate controllability and observability of such systems are given. They are used to show dualities between these properties. The theorems on dualities extend the results known for finite-dimensional systems.
منابع مشابه
Numerical method for solving optimal control problem of the linear differential systems with inequality constraints
In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...
متن کاملJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملObservability of a class of linear dynamic infinite systems on time scales
Linear dynamic systems with output, evolving on the space R∞ of infinite sequences, are studied. They are described by infinite systems of ∆-differential linear equations with row-finite matrices, for which time belongs to an arbitrary time scale. Such systems generalize discrete-time and continuous-time row-finite systems on R∞, studied earlier. Necessary and sufficient condition on observabil...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کامل